روش های ترکیب شبکه عصبی در پیش بینی نتایج آزمایشات روانی و مقاومتی بتن خودتراکم

Authors

Abstract:

امروزه بتن خودتراکم ازجمله بتن های پرکاربرد دنیا می باشد. اما از آنجا که طرح اختلاط آن به نتایج آزمایشات روانی آن وابسته است، در پروژه های عملی به علت وجود خطای کارگاهی، هزینه بالا، اجرای مشکل بعضی از آزمایشات و نبودن زمان کافی برای تست نمونه ها، پیمانکاران از این بتن بسیار کم استفاده کرده اند. به همین منظور برای تسهیل در استفاده اجرایی از بتن خودتراکم، محققان به فکر مدلسازی آن افتادند. یکی از روش های مدلسازی، شبکه های عصبی مصنوعی است. هدف این مقاله ارایه طرح اختلاط، با مصالح ساده و در دسترس پیمانکاران و در نهایت بدست آوردن تخمینی مناسب برای نتایج آزمایشات روانی و مقاومتی بتن خودتراکم می باشد. بدین ترتیب که با انجام آزمایشات ساده بتن خودتراکم بتوان نتایج آزمایشات مشکل و زمان بر را با دقت آزمایشگاه، در محیط کارگاه بدست آورد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ترکیب شبکه های عصبی برای پیش بینی قیمت سهام

در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...

full text

پیش بینی مشخصات سخت شده بتن خودتراکم الیافی به کمک شبکه های عصبی مصنوعی

امروزه روش­های هوشمند و الهام گرفته از طبعیت در حل مسائل پیچیده طرفداران زیادی دارد یکی از پرطرفدارترین و کاراترین این ساختارها، شبکه­های عصبی مصنوعی هستند که قادرند یک رابطه کلی بین اطلاعات حجیم و پیچیده ناشی از آزمایش­ها و مثال­های تجربی به دست آورند. از طرف دیگر، ترکیب بتن الیافی با بتن خودتراکم، یک نوع بتن جدید با سیالیت بالا و چسبندگی خوب تولید می­کند. این نوع بتن به علت حضور الیاف دارای م...

full text

بررسی ترکیب تبدیل های موجک و شبکه عصبی در پیش بینی جریان های سطحی تنگه هرمز

جریان‌های سطحی اقیانوسی، نقش مهمی در انتقال گرما و تغییرات آب و هوایی دارد. ازاین‌رو، پیش‌بینی جریان‌های دریایی از اهمیت بسزایی در اقیانوس‌شناسی برخوردار است. در این پژوهش با به‌کارگیری شبکه‌‌عصبی و تکنیک تبدیل موجک به پیش‌بینی جریان‌های سطحی تنگه‌هرمز پرداخته شده است. بدین منظور داده‌های ثبت‌شده این حوزه از نوامبر سال 1992 تا دسامبر سال 2014 با گام زمانی 5 روزه از سایت ناسا تهیه و با به‌کا...

full text

ترکیب شبکه های عصبی و الگوریتم های تکاملی در پیش بینی تقاضای انرژی

پیش­بینی روند تقاضای انرژی جهت اتخاذ سیاست­های مقتضی و مناسب اهمیت فراوانی دارد. به دلیل روند پرنوسان و غیر خطی تقاضای انرژی و متغیرهای موثر بر آن قابلیت روش­های هوشمند و غیر خطی به خصوص شبکه­های عصبی و الگوریتم­های تکاملی به منظور پیش­بینی تقاضای انرژی در مطالعات مختلف به اثبات رسیده است. با وجود نقاط قوت فراوان، این تکنیک­ها با مسائل مهمی همچون تحمیل فرم تبعی خاص- در الگوریتم­های تکاملی- یا ن...

full text

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 37

pages  39- 49

publication date 2014-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023